

January 2008

74AC14, 74ACT14 Hex Inverter with Schmitt Trigger Input

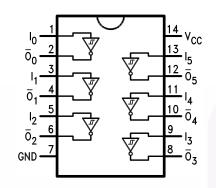
Features

- I_{CC} reduced by 50%
- Outputs source/sink 24mA
- 74ACT14 has TTL-compatible inputs

General Description

The 74AC14 and 74ACT14 contain six inverter gates each with a Schmitt trigger input. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.

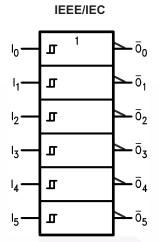
The 74AC14 and 74ACT14 have hysteresis between the positive-going and negative-going input thresholds (typically 1.0V) which is determined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations.


Ordering Information

Order Number	Package Number	Package Description
74AC14SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74AC14SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC14MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC14PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT14SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74ACT14MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT14PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.


Connection Diagram

Pin Description

Pin Names	Description
I _n	Inputs
Ō _n	Outputs

Logic Symbol

Function Table

Input	Output
Α	ō
L	Н
Н	L

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
I _{IK}	DC Input Diode Current	
	$V_{I} = -0.5V$	–20mA
	$V_{I} = V_{CC} + 0.5$	+20mA
VI	DC Input Voltage	–0.5V to V _{CC} + 0.5V
I _{ОК}	DC Output Diode Current	
	$V_{O} = -0.5V$	–20mA
	$V_{\rm O} = V_{\rm CC} + 0.5 V$	+20mA
Vo	DC Output Voltage	–0.5V to V _{CC} + 0.5V
Ι _Ο	DC Output Source or Sink Current	±50mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Output Pin	±50mA
T _{STG}	Storage Temperature	–65°C to +150°C
TJ	Junction Temperature	140°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	
	AC	2.0V to 6.0V
	ACT	4.5V to 5.5V
VI	Input Voltage	0V to V _{CC}
V _O	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	–40°C to +85°C

		V _{cc}		T _A =	+25°C	T _A = -40°C to +85°C	
Symbol	Parameter	(V)	Conditions	Тур	Guara	nteed Limits	Units
V _{OH}	Minimum HIGH Level	3.0	Ι _{ΟUT} = -50μΑ	2.99	2.9	2.9	V
	Output Voltage	4.5		4.49	4.4	4.4	
		5.5		5.49	5.4	5.4	
		3.0	I _{OH} = 12mA		2.56	2.46	
		4.5	I _{OH} = 24mA		3.86	3.76	
		5.5	$I_{OH} = 24 m A^{(1)}$		4.86	4.76	
V _{OL}	Maximum LOW Level	3.0	$I_{OUT} = 50 \mu A$	0.002	0.1	0.1	V
	Output Voltage	4.5		0.001	0.1	0.1	
		5.5		0.001	0.1	0.1	
		3.0	$I_{OL} = 12mA$		0.36	0.44	
		4.5	$I_{OL} = 24mA$		0.36	0.44	
		5.5	$I_{OL} = 24 m A^{(1)}$		0.36	0.44	
I _{IN} ⁽³⁾	Maximum Input Leakage Current	5.5	$V_I = V_{CC}, GND$		±0.1	±1.0	μA
V _{t+}	Maximum Positive	3.0	T _A = Worst Case		2.2	2.2	V
	Threshold	4.5			3.2	3.2	
		5.5			3.9	3.9	
V _t -	Minimum Negative	3.0	T _A = Worst Case		0.5	0.5	V
	Threshold	4.5			0.9	0.9	
		5.5			1.1	1.1	
V _{H(MAX)}	Maximum Hysteresis	3.0	T _A = Worst Case		1.2	1.2	V
		4.5			1.4	1.4	
		5.5			1.6	1.6	
V _{H(MIN)}	Minimum Hysteresis	3.0	T _A = Worst Case		0.3	0.3	V
		4.5			0.4	0.4	
		5.5			0.5	0.5	
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA
I _{OHD}	Output Current ⁽²⁾	5.5	V _{OHD} = 3.85V Min.			-75	mA
I _{CC} ⁽³⁾	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		2.0	20.0	μA

Notes:

1. All outputs loaded; thresholds on input associated with output under test.

2. Maximum test duration 2.0ms, one output loaded at a time.

DC Electrical Characteristics for AC

3. $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}.$

		Vcc		$T_A = H$	⊦25°C	T _A = -40°C to +85°C	
Symbol	Parameter	(V)	Conditions	Тур.	0	Suaranteed Limits	Units
V _{IH}	Minimum HIGH Level	4.5	$V_{OUT} = 0.1V$ or	1.5	2.0	2.0	V
	Input Voltage	5.5	V _{CC} – 0.1V	1.5	2.0	2.0]
V _{IL}	Maximum LOW Level	4.5	$V_{OUT} = 0.1V$ or	1.5	0.8	0.8	V
	Input Voltage	5.5	$V_{CC} = 0.1V$	1.5	0.8	0.8	
V _{OH}	Minimum HIGH Level	4.5	$I_{OUT} = -50 \mu A$	4.49	4.34	4.4	V
	Output Voltage	5.5		5.49	5.4	5.4	
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24 \text{mA}$		3.86	3.76	
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24 \text{mA}^{(4)}$		4.86	4.76	
V _{OL}	Maximum LOW Level	4.5	Ι _{ΟUT} = 50μΑ	0.001	0.1	0.1	V
	Output Voltage	5.5		0.001	0.1	0.1	1
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24 \text{mA}$		0.36	0.44	
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24 \text{mA}^{(4)}$		0.36	0.44	
I _{IN}	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		±0.1	±1.0	μA
V _{H(MAX)}	Maximum Hysteresis	4.5	T _A = Worst Case		1.4	1.4	V
		5.5			1.6	1.6]
V _{H(MIN)}	Minimum Hysteresis	4.5	T _A = Worst Case		0.4	0.4	V
		5.5			0.5	0.5]
V _{t+}	Maximum Positive	4.5	T _A = Worst Case	/	2.0	2.0	V
	Threshold	5.5			2.0	2.0]
V _t -	Minimum Negative	4.5	T _A = Worst Case		0.8	0.8	V
	Threshold	5.5			0.8	0.8	1
I _{CCT}	Maximum I _{CC} /Input	5.5	$V_{I} = V_{CC} - 2.1V$	0.6		1.5	mA
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA
I _{OHD}	Output Current ⁽⁵⁾	5.5	V _{OHD} = 3.85V Min.			-75	mA
I _{CC}	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		2.0	20.0	μA

74AC14, 74ACT14 — Hex Inverter with Schmitt Trigger Input

Notes:

4. All outputs loaded; thresholds on input associated with output under test.

5. Maximum test duration 2.0ms, one output loaded at a time.

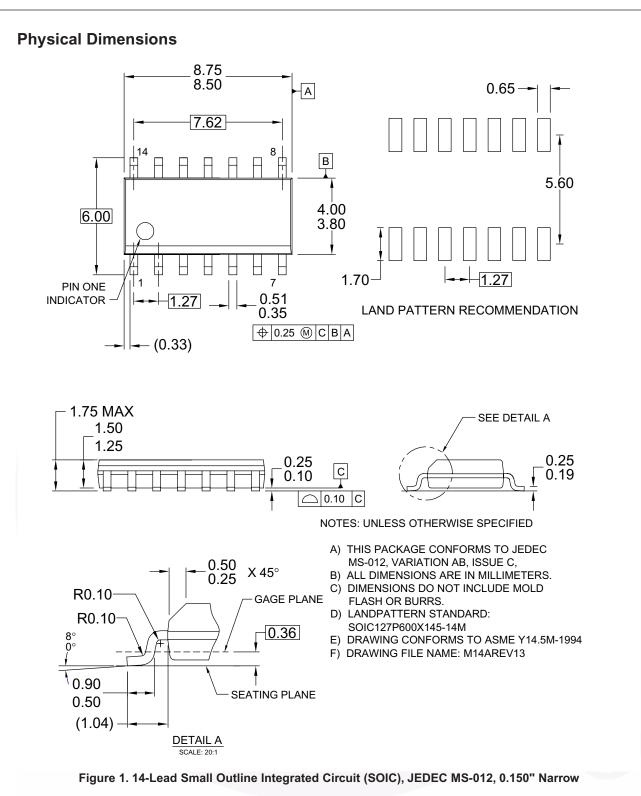
AC Electrical Characteristics for AC

			T _A C	_ = +25° = 50p	C, F	$\begin{array}{c} T_{A} = -40^{\circ}C\\ C_{L} = \end{array}$	c to +85°C, 50pF	
Symbol	Parameter	V _{CC} (V) ⁽⁶⁾	Min.	Тур.	Max.	Min.	Max.	Units
t _{PLH}	Propagation Delay	3.3	1.5	9.5	13.5	1.5	15.0	ns
		5.0	1.5	7.0	10.0	1.5	11.0	
t _{PHL}	Propagation Delay	3.3	1.5	7.5	11.5	1.5	13.0	ns
		5.0	1.5	6.0	8.5	1.5	9.5	

Note:

6. Voltage range 3.3 is $3.3V \pm 0.3V$. Voltage range 5.0 is $5.0V \pm 0.5V$.

AC Electrical Characteristics for ACT

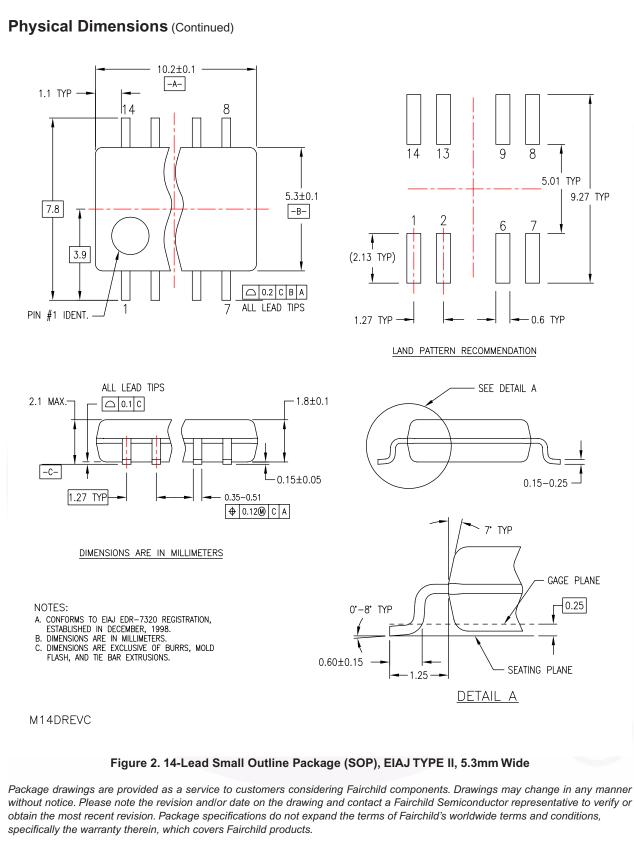

				λ = +25° β _L = 50p		$T_A = -40^{\circ}C$ $C_L =$	to +85°C, 50pF	
Symbol	Parameter	V _{CC} (V) ⁽⁷⁾	Min.	Тур.	Max.	Min.	Max.	Units
t _{PLH}	Propagation Delay	5.0	3.0	8.0	10.0	3.0	11.0	ns
t _{PHL}	Propagation Delay	5.0	3.0	8.0	10.0	3.0	11.0	ns

Note:

7. Voltage Range 5.0 is $5.0V \pm 0.5V$.

Capacitance

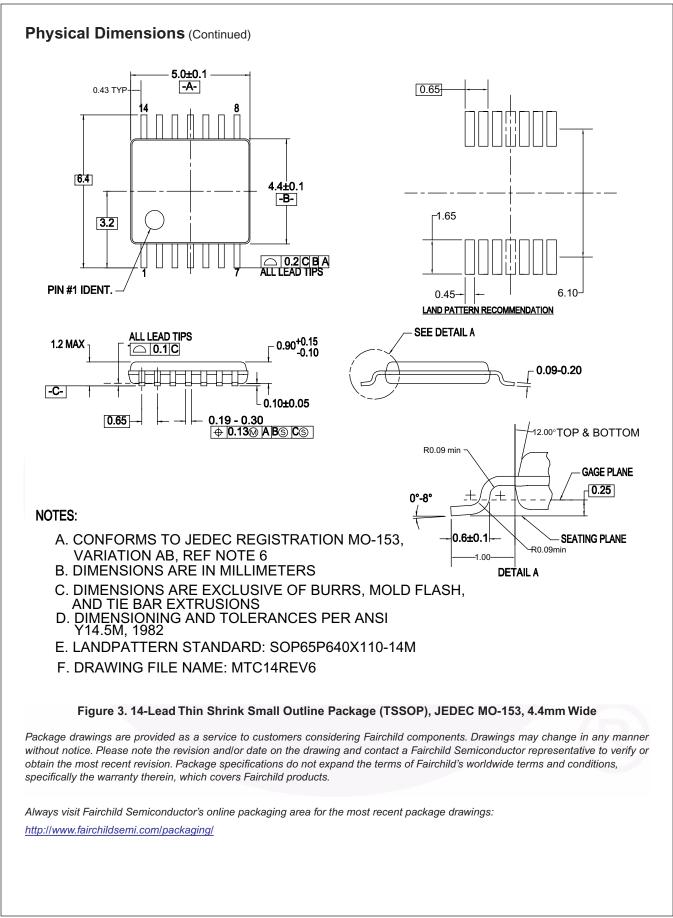
Symbol	Parameter	Conditions	Тур	Units
C _{IN}	Input Capacitance	V _{CC} = OPEN	4.5	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 5.0V$		
	AC		25.0	pF
	ACT		80	

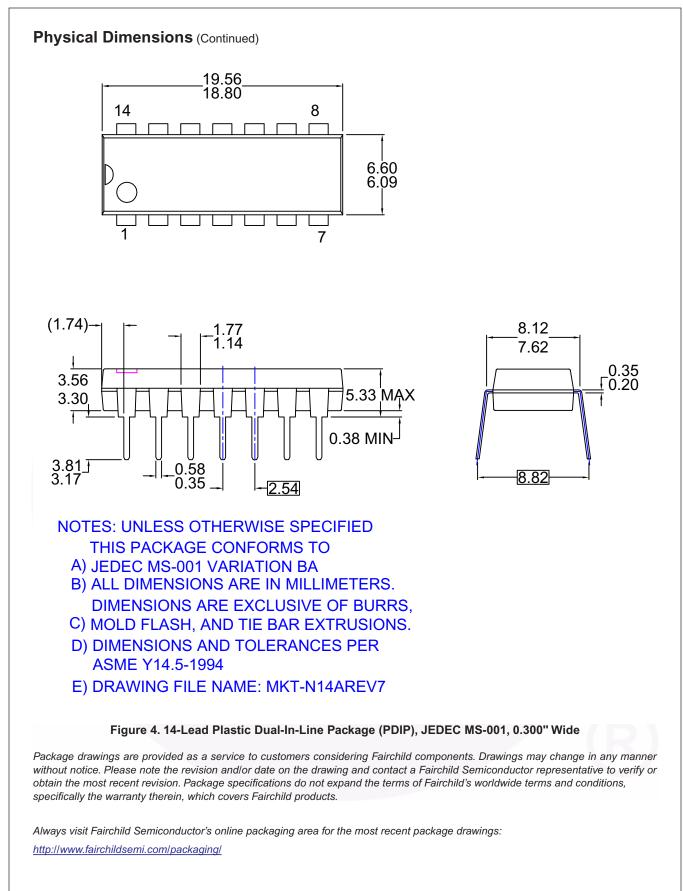


Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/


74AC14, 74ACT14 — Hex Inverter with Schmitt Trigger Input



Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

74AC14, 74ACT14 — Hex Inverter with Schmitt Trigger Input

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx [®] Build it Now™ CorePLUS™ <i>CROSSVOLT</i> ™ CTL™ Current Transfer Logic™ EcoSPARK® EZSWITCH™ * Fairchild® F	FPS™ FRFET [®] Global Power Resource [™] Green FPS™ e-Series™ GTO™ <i>i-Lo™</i> IntelliMAX™ ISOPLANAR™ MgaBuck™ MICROCOUPLER™ MicroPak™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC [®] OPTOPLANAR [®]	PDP-SPM [™] Power220 [®] Power247 [®] POWEREDGE [®] Power-SPM [™] PowerTrench [®] Programmable Active Droop [™] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] SMART START [™] SMART START [™] SMART START [™] SUperFET [™] SuperFET [™] SuperSOT [™] -6 SuperSOT [™] -8	SyncFET™ Free Power Franchise® The Power Franchise® TinyBoost™ TinyBoost™ TinyUcgic® TINYOPTO™ TinyPOWer™ TinyPWM™ TinyWire™ µSerDes™ UHC® Ultra FRFET™ VCX™
---	--	---	---

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improv the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

PRODUCT STATUS DEFINITIONS